Linux LVM

A basic introduction to LVM

Logical Volume Management

by Peter Sjöberg*
peters @ techwiz.ca

Slides can be found at http://www.techwiz.ca/~peters/presentations/lvm

*with input from Frank Kannemann

Agenda

Some basic background about Files and Filesystems under Linux

What is LVM and why should I use it

How to create a simple LVM environment

If time allows

• A little about snapshots and a advanced FC4 slide demo

Audience Participation

Please raise you hands to allow me to taylor this presentation, not meant to embarrass anyone:

- Beginner User < 1 year: haven't touched the CLI
- Intermediate User > 1 year: Using CLI sometimes
- Advanced user: linux is my first language

Do you have more have 1 disk attached to your Linux box?

When to and not use LVMs

USE WHEN:

- Lots of DISKs and you need to simplify
- Need flexiblity of file system expansion
- When you want to learn an advanced storage management topic

DON'T USE:

- SINGLE Partition Environments
- If Command line (CLI) is scary to you
- Without access to a System Administrator :-)

Background Info

Background

- A hard disk on a modern system can be seen as one continuous row of logical blocks.
- To store data on a disk this row needs to be cut in sections called partitions
- It can be
 - one huge partition covering the whole disk
 - several small partitions on one disk
 - or a combination over several disks.
- One partition must be one continuous chunk of blocks (and herein is part of the problem)
- Once you created a partition you have to live with it

Layers to make it easier

Layers in a typical system (before LVM)

Files/Dirs Filesystems **Partitions Disks**

What is a Disk?

- Lets look at some terms first, starting from the bottom and working our way up
- The harddisk is the only Hardware piece we're going to talk about here
- It has various techie things in it:
 - Cylinders, Heads, Sectors, mbr, partitions
 - It's own cpu, cache, firmware etc
- but for this discussion a hard disk on a modern system can be seen as one continuous row of logical blocks.
- Typical disk names in Linux are hda, sda

Partitions

- To store data on a disk this continuous row of logical blocks needs to be cut in sections called partitions
- The original IBM PC from 1981 only had 4 primary partitions
 - On linux you can see them as hda1-hda4
- This was later improved by adding extended partitions
 - On linux they show up as partition hda5 and up
- Normally managed by fdisk or some graphical partition/volume manager
- NOTE: One partition must be a continuous

Partition tools

- I have to at least mention that it does exist tools that can change the existing partitions without loosing existing data.
 - I never tried this tools
 - They are all very risky
- parted
 - A free tool that can handle ext2 and vfat but not NTFS
- Partition magic
 - Commercial tool that can do more including NTFS
- Fips
- Linux-ntfs

Partitions - cont

- Due to historical reasons partition sizes are based on Cylinders
- On a typical linux system you have something like
 - hda1 /
 - hda2 swap
 - hda3 /home
- Or for a dual boot
 - hda1 M\$ Windows C:
 - hda2 swap
 - hda3 /
 - hda5 /home

Filesystems

- Filesystems are a fancy way to hold together a group of files and directories
- Without LVM one filesystem=one partition
- Common File Systems:
 - In the Windows World:
 - FAT (dos) FAT12/16/32
 - NTFS
 - In Linux
 - Ext2/3, Reiserfs, jfs, xfs
 - FAT/NTFS
 - And many many more

Example File systems & Partitions

```
# df
Filesystem
                            Used Avail Use% Mounted on
                      Size
/dev/hda1
                      510M
                            269M
                                  242M
                                        53% /
/dev/hda3
                      4.0G
                            351M
                                 3.7G 9% /home
                            2.1G 2.0G 52% /opt
/dev/hda5
                      4.0G
/dev/hda6
                      4.0G
                            3.1G 976M 77%
                                            /usr
/dev/hda7
                                  904M 12% /var
                      1.0G
                            121M
```

Files on a linux (and unix) system

- At last we are at the top, the user level
- Within User Level we have
 - Files
 - Directories
 - Filesystems
- Files Hold Data
- Directories hold files and directories
- Filesystems holds directories and files
- Mount points hold Filesystems

Intro to LVM

WHY Volume Management?

- Because
 - We can and it is there
- Actually
 - To make your life as System Administrator easier
- To give you a bigger Sandbox to play in
- Is Linux Volume Management Special?
 - NO :-)
 - A more advanced way of keeping track of data
 - Exists on other OSes also (even some versions of M\$ win)
 - Commonly not used by default

Time for volumes

- Time to fill in that hole in the middle
- By adding another layer between partitions and filesystems we break the OneFS=OnePartition relation
- This have many advantages
- 2 special reasons:
 - Can carve out non continues filesystems
 - Can add disks partitions together so they look like one big disk

What is LVM?

- LVM
 - stands for Logical Volume Management
- It's the Linux implementation of Volume Management
- It is placed between the filesystems and disk partitions

What is LVM? cont

New Terms

- Physical Volumes PVs
 - collects all disk partitions
- Volume Group VGs
 - creates one big virtual disk
- Logical Volumes LVs
 - from the VG you can then create filesystems within LVs

LVM in Layers

• Here is a simplified picture of the LVM structure showing PV, VG and LG

Logical Volumes Volume Group **Physical**

LVM - cont

- LVM can be used to solve the previous problems with static partitions and many other problems also.
- With LVM it's no problem to reduce or extend an existing file system.
- In many cases you can even increase the size without dismounting the file system
 - Good when you discover that that 4.5G download won't fit
- Adding another disk is also an easy task
- Most benefits are on multi disk systems

How does LVM work?

- It collects all bits and pieces of diskspace and make a volume group (VG) of it
- From that volume group you then carve out a pile of blocks and create a logical volume (LV)
- The logical volume doesn't have to be a chunk of continues blocks, it doesn't even have to be on the same disk.
- LVM takes care of finding all the pieces of the cake and make it appear as one big cake to the next level (the filesystem)

LVM partitions

- Leo has a 100G disk
- He takes a safer route and makes 3 partitions
 - one smaller for / (which includes /boot, /dev, /etc, /lib...)
 - one swap
 - and one big LVM (AKA VG) of the rest of the disk.
- Out of the VG he
 - create LVs for /home, /usr, /var, /data, /tmp etc.
 - The created LVs are not using all the space in the LV, some is left as spare
 - As you soon see leaving some unused is a good thing

LVM partitions - cont

- After a while Leo discovers that /usr is now full so he can't install the latest OpenOffice/KDE/Gnome package.
 - Since it's space left in the VG he executes some commands and voila! /usr is bigger
- Later he needs to expand /data but by now all free VG space is used up
- Some space is left in /home so he
 - Use some lvm magic to reduce the size of /home
 - Use more lvm magic to use the recovered space to increase the size of /data
- Life goes on

LVM partitions - cont

- After a while Leo needs some more space and buys another hard disk
- With just 2 LVM commands the new disk is added to the total pool of VG space to be used as needed
- He can now expand any LV as needed until that disk is used up
 - At what point he can keep on adding disks as long as the hardware supports it
- Life is good

LVM example

 Here is a simplified picture of the LVM structure showing PV, VG and LG

Df with lvm

How do I get the LVM joy?

- Many distros gives the option use LVM and some even does it by default (FC4 is one).
 - Type "mount"
 - Do you see something like "/dev/mapper/something"
 - If yes; Good you're already using it
 - If no; follow closely
- When you install a new system it can be implemented when partitioning the disk.
 - Probably need to select manual/custom/expert and then look for something with LV when partitioning the disk.
- Be careful with putting /boot or / on LVM, all distroversions can't handle it.

How do I get tools?

If you already have a system running but no volume groups you may have to install the tools first

- Mandrake:
 - urpmi lvm2
- Debian:
 - apt-get install lvm2
- Fedora:
 - yum install lvm2
- Gentoo:
 - emerge lvm2 (?)
- Suse:
 - yast -i lvm2 (?)

How do I get the LVM joy? - cont

- Once the tools are there next problem is to find somewhere to play.
- You need a partition to convert to LVM
 - New disk
 - Unused partition (that old Windows partition works fine)

Your first LV

- After identifying a partition you need to prepare it
- Here are some examples with /dev/hdc1 as the target
 - With some tool, change the partition type to 0x8e or LV
 - Prepare it for lvm with:
 - pvcreate /dev/hdc1
 - Create a new volume group out of it
 - vgcreate vg /dev/hdc1
 - Create a Logical Volume AKA filesystem
 - lvcreate -L10G –name dataly vg

```
[root@dhcp132 ~]# pvcreate /dev/hdc1
...
[root@dhcp132 ~]# vgcreate vg /dev/hdc1
...
[root@dhcp132 ~]# lvcreate -L10G -name datalv vg
```

Your first LVM - cont

- Now you have a new device in
 - /dev/vg/datalv
 - This is a symbolic link that points to /dev/mapper/vg-datalv
 - The 'mapper' part is there as of version2 of LVM.
 - Don't worry about it, just accept it
 - or spend some hours googling about the new device mapper
- This device is very much like a normal partition like the usual /dev/hda1
 - It's just much easier to change the size of it

Your first LVM - cont

- Now when you have this device it's time to start using it.
 - Format the filesystem
 - mkfs -t reiserfs /dev/vg/datalv
 - Mount it somewhere
 - mkdir /data
 - mount /dev/vg/datalv /data
- That's it, you have started to use LVM

```
[root@dhcp132 ~]# mkfs -t reiserfs /dev/vg/datalv
....
[root@dhcp132 ~]# mkdir /data
[root@dhcp132 ~]# mount /dev/vg/datalv /data
```

Advanced LVM

First LVM Done

- Of course just creating a filesystem was the least interesting part
 - So lets move on to the more interesting part
- Scenario
 - You have both usr and data on LVM
 - You need to expand usr
 - It is free space in data
- When dealing with LVM you have to remember that it's two layers involved here
 - The layer under the filesystem previously known as partition
 - The filesystem it self

Filesystem/LV/partitions

- When you create a filesystem with mkfs it automagically makes a filesystem of the same size as the partition it's created on
 - No surprise here
- Since with LVM the underlaying partition can change size we have to make the filesystem match it
 - Having the real filesystem smaller then the partition
 - No problem
 - Having the real filesystem bigger then the partition
 - Huge problem
 - Probably loose data
 - Maybe even corrupt other filesystems

Reduce

- In order to expand /usr you need to have some free space in your VG
- You can see how much is free with vgdisplay

```
[root@dhcp132 ~]# vgdisplay | grep Free
Free PE / Size 44 / 1.38 GB
```

- Ops, only 1.38G free, and we needed 3G
- Now we have to start with reduce something else like dataly

Reduce - cont

- In all cases you have to umount the filesystem before this can be done so
 - umount /data
- Step 1, reduce the filesystem it self with 3G
 - Reiserfs
 - resize_reiserfs -s-3G /dev/vg/datalv
 - ext2/ext3
 - resize2fs /dev/vg/datalv 7G
 - Sorry, no "-nG" here, you have to calculate your self
 - xfs/jfs
 - There is (currently?) no way to shrink this

Reduce - cont2

- Step 2, reduce the logical volume
 - lvreduce -L-3G /dev/vg/datalv
- Last step, remount it
 - mount /data

```
[root@dhcp132 ~]# vgdisplay | grep Free
Free PE / Size 140 / 4.38 GB
```

 And now you have 3G more free space in your VG and this without to much pain

Expand

- Now when we have the space, lets expand /usr
- This is done in the reverse order, first LV then FS
- Step1, increase the LV
 - lvresize -L+3G /dev/vg/usrlv
- Step2, increase the filesystem
 - Reiserfs:
 - resize_reiserfs /dev/vg/usrlv
 - Xfs
 - xfs_growfs /usr
 - Jfs
 - mount -o remount, resize /usr

Expand - cont

- Ext2/3
 - Must be umounted first and for /usr that can be tricky but
 - umount /usr
 - resize2fs /dev/vg/usrlv
 - mount /usr
- And we are done
 - We reduce the size used by /data
 - And used that to expand /usr

Even more Advanced LVM

What's next?

- So, now you seen that the filesystem size can be changed without to much problem
 - What's next?
- How about
 - expanding /data again
 - but this time by adding a disk

Adding a disk

- For that we first need to physically install the disk first
- Once it's installed we partition it as one big LV partition
 - echo "/dev/hdc1:start=63,size=,Id=8e"|sfdisk /dev/hdc
- Great, now we have a disk partitioned and ready for LVM

Add disk

- Lets initialize it
 - pvcreate /dev/hdc1
- And then we add it to the total VG pool
 - vgextend vg /dev/hdc1
- Verify how much is free now

```
[root@dhcp132 ~]# vgextend vg /dev/hdc1
  Volume group "vg" successfully extended
[root@dhcp132 ~]# vgdisplay |grep Free
  Free PE / Size 1290 / 40.31 GB
[root@dhcp132 ~]#
```

- More then enough for what we need
- Expanding /data in the same way we expanded /usr
- DONE

The END

QUESTIONS?

References
http://tldp.org/HOWTO/LVM-HOWTO
Google for "LVM HOWTO"

Slides can be found at http://www.techwiz.ca/~peters/presentations/lvm

Snapshots

- Snapshots have at least two functions
- #1 What if we could "freeze" the current state for that database volume and back it up while the DB is still up
 - This is called ReadOnly snapshot
 - Works fine to get one volume in a consistent state
- #2 I would like to test this new app. It's going to write a pile of stuff somewhere but then I want to forget that and repeat the test
 - This is ReadWrite snapshot
 - Works for many other applications also

Snapshots - cont

- #2 is also excellent for Virtual Machines
 - You have one base os install
 - You create several snapshots of that base os
 - One for eache Virtual Machine
 - Any file that gets changed is stored in the individual VMs snapshot copy
 - Unchanged files are only stored once
 - Saving overall space

Create a snapshot device

- Lets create a snapshot volume of the dataly
 - lvcreate -L512M -s –name databackuplv /dev/vg/datalv
- Since it's a copy of an existing volume it doesn't need to be initialized, you just to mount it
 - mount /dev/vg/databackuplv /backup/data
- Run the backup
 - fancybackupsw /backup/data
- Remove the snapshot
 - umount /backup/data
 - lvremove /dev/vg/databackuplv

LVM Commands, PV

- Here are some of the PV commands
 - pvscan scan all disks for physical volumes
 - pvdisplay display attributes of a physical volume
 - pvcreate initialize a disk or partition for use by LVM
 - pvchange change attributes of a physical volume
 - pvmove move physical extents from one disk to another disk

LVM Commands, VG

- Here are some of the VG commands
 - vgscan scan all disks for volume groups
 - vgrename rename a volume group
 - vgremove remove a volume group
 - vgreduce reduce a volume group
 - vgmerge merge two volume groups
 - vgextend add physical volumes to a volume group
 - vgdisplay display attributes of volume groups
 - vgcreate create a volume group

LVM Commands, LV

- Here are some of the LV commands
 - lvscan scan (all disks) for logical volumes
 - lvrename rename a logical volume
 - lvremove remove a logical volume
 - lyreduce reduce the size of a logical volume
 - lvextend extend the size of a logical volume
 - lvdisplay display attributes of a logical volume
 - lvcreate create a logical volume in an existing volume group

vgdisplay

```
root@dhcp132 ~]# vgdisplay
   Finding all volume groups
 --- Volume group ---
 VG Name
                      VolGroup00
 System ID
 Format
                      lvm2
 Metadata Areas
 Metadata Sequence No
 VG Access
                      read/write
                      resizable
 VG Status
 MAX LV
 Cur LV
 Open LV
 Max PV
 VG Size
                      9.88 GB
 PE Size
                      32.00 MB
 Total PE
                      316
 Alloc PE / Size 144 / 4.50 GB
 Free PE / Size
                      172 / 5.38 GB
 VG UUID
                      xFS581-ZXRS-vBaG-xD64-sbhn-7bod-4rc13o
```

Ivdisplay -v

```
root@dhcp132 ~]# lvdisplay /dev/VolGroup00/LogVol00
    Logical volume
                       /dev/VolGroup00/LogVol00
LV Name
                       VolGroup00
VG Name
LV UUID
                       UMQ8ro-nTt6-p5PA-IsXN-JC6n-JuaE-APWYiO
LV Write Access read/write
                       available
LV Status
# open
LV Size
                       4.00 GB
Current LE
                       128
Segments
Allocation
                       inherit
Read ahead sectors
Block device
                       253:0
```

Don't use /dev/mapper

```
[root@dhcp132 ~]# lvdisplay -v /dev/mapper/VolGroup00-datalv
  Using logical volume(s) on command line
  Wiping cache of LVM-capable devices
Volume group "mapper" not found
root@dhcp132 ~]# lvdisplay -v /dev/VolGroup00/datalv
  Using logical volume(s) on command line
 --- Logical volume ---
LV Name
                       /dev/VolGroup00/datalv
                       VolGroup00
 VG Name
                       tSJfYV-rzy6-fynl-vCql-WGRs-MFF6-lM3PEf
 LV UUID
LV Write Access read/write
                       available
 # open
                       64
 Segments
Read ahead sectors 0
 Block device
```

pvdisplay

```
root@dhcp132 ~]# pvdisplay
 --- Physical volume ---
                    /dev/hda2
 VG Name
                  9.88 GB / not usable 0
Allocatable
 PE Size (KByte) 32768
                     12
 Free PE
 Allocated PE
                     uKwIoE-NcLK-lEqF-Zyuf-bq4i-6HTv-gXqHqK
 PV UUID
 --- Physical volume
              /dev/hdc1
 VG Name
                     39.97 GB / not usable 0
 Allocatable
PE Size (KByte) 32768
Total PE
                     1279
 Free PE
                     1279
                      Diy7y9-RfoX-11CZ-0dtt-S4ke-Hoei-GwSjHa
 PV UUID
```

How to do it under Fedora Core 4

- This is as close as it comes to a demo
 - Since FC4 use LVM by default it seems to be the best candidate for a scary test
 - The default install (Personal WS) use one big root partition covering the whole disk
 - To change that a little you need to reduce it's size
- Be prepared to loose everything
 - as with all disk operations, make sure you have a good backup
- Check sizes
 - df -h can be used to see how much space is used
 - Should probably print out the output of this

"Demo"

- Steps to reduce it
 - Boot on the cd and type "linux rescue" to get to rescue mode
 - When asked about scan for partitions, select "skip"
- Now you're at a position where you can do lots of damage so be careful
 - Scan and activate all logical volumes
 - lvm.static vgscan
 - lvm.static vgchange -ay
 - lvm.static vgdisplay

Demo 2

- Now all devices are listed under /dev/mapper
 - "ls /dev/mapper" to verify that it's there
- Lets reduce the size of the root partition.
- Assuming the "df -h" before indicated that we would get away with only 4G you can do

```
#resize2fs /dev/VolGroup00/LogVol00 4G
Resizing the filesystem on /dev/VolGroup00/LogVol00 to 1048576 (4k) blocks.
The filesystem on /dev/VolGroup00/LogVol00 is now 1048576 blocks long.

#lvm.static lvreduce -L4G /dev/VolGroup00/LogVol00
    WARNING: Reducing active logical volume to 4.00 GB
    THIS MAY DESTROY YOUR DATA (filesystem etc.)
Do you really want to reduce LogVol00? [y/n]:
Reducing logical volume LogVol00 to 4.00 GB
    Logical volume LogVol00 successfully resized
```

Demo 3

- Now root's size is reduced
- Reboot into normal mode
- You have a VG that has lots of free space so you can
 - Create partitions for /home. /var, /usr etc
 - And move over the data to create a multi partition system

Example time

- Now we have gone over the basics of a basic system
- Next are two examples to show some of the issues with the normal/default way of creating filesystems and partitioning.

Multiple partitions

- Marie has a 100G disk
- She makes several partitions
 - /boot
 - Swap
 - /
 - /var
 - /usr
 - /home
 - /data
 - **–** ...
- She has problems guessing the size of each partition

Multiple partitions - cont

- After a while she discovers that /usr is now full so she can't install the latest OpenOffice/KDE/Gnome package.
- There is some space left in /data but that's not where she needs it
- Her options are limited
 - Reformat the hard disk and start over with different sizes
 - And hit the same problem later
 - Have fun with symlinks
 - And loose track of where data is actually stored
 - Expanding the total diskspace by adding another disk
 - this is anything but simple and you may end up with another symlink blues

Single partition

- Sven also has one 100G hard disk
- To avoid any issues with filesystem filling up he makes one huge partition of the whole hard disk.

```
swap/ everything
```

- This gives room for all the stuff no matter if mp3, video or programs ends up taking most space.
- Life is good or?

Single partition - cont

- Some of the problems with this are
 - Hard to catch if something like /var/log, /var/spool or /tmp is growing out of control.
 - After a bad crash it takes "forever" to fsck
 - A user application (running amok) can easily fill up the disk and cripple/block important system functions
 - If the filesystem gets to corrupt to recover you have no fence and loose everything
- Expanding the total diskspace by adding another disk is anything but simple
 - Same problems as with multi partitions

Copyright & License

Copyright(c) 2005, Peter Sjöberg

•

• This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.